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1 Introduction, motivation and scope

One of the biggest puzzles in the Standard Model (SM) is the origin and hierarchy of

masses and mixings. When it comes to masses the scale of the problem is enormous: one

needs to explain a range of masses that spans fifteen orders of magnitude between the mass

of the lightest neutrino to the top. Moreover the patter of mixings is interesting. In the

quark sector the first and second family mix strongly while all other mixings are small. In

the lepton sector, all mixings measured so far are maximal. It seems to suggest that as we

move up in mass mixings tend to become smaller.

There are several ideas on the origin of mass, the simplest being via a Higgs scalar that

is responsible for electroweak symmetry breaking. This and related ideas are expected to

be tested at LHC. There are fewer and definitely less successful ideas that are purported

to explain the hierarchy of masses of the SM. They can be roughly lumped into four

classes: radiative mechanisms, [1], texture zeros, [2, 3], family symmetries [4–6] and seesaw

mechanisms, [7], although the classes are not completely disjoint. In particular texture

zeros can be considered as a class of family symmetries as they are usually implemented

via a discrete symmetry. Many of the ideas developed to deal with the mass hierarchy of

th SM are reviewed in [8].

String theory has emerged as an arena for unifying interactions, in the last few decades.

Finding the SM in a string theory vacuum has proved a difficult task especially when it

comes to match to the SM pattern of masses. So far none of the early ideas on mass

hierarchies has been successfully implemented in a string vacuum, although string inspired

use of anomalous U(1)’s in that direction was advocated [9]. Recently, a simple implemen-

tation of the Froggatt-Nielsen idea was advocated in the context of F-theory, [10]. There

have been however partial hierarchies in the SM spectrum that were successfully imple-

mented like the top hierarchy and neutrino masses in the heterotic string using higher order

couplings, [11–14], or the third family and neutrino masses using large dimensions, [16].

Two perturbative landscapes of string theory vacua have monopolized attention in

the past two decades. The first to be analyzed was the heterotic landscape deemed inter-

esting because of its large and appealing gauge symmetry and the simplest structure of

its perturbative expansion. Although a large set of vacua was found, some of them phe-

nomenologically promising, several difficulties hampered the search for a SM-like vacuum,

most of all the fact that the string theory input in vacuum construction (generalized ge-

ometry) is quite disjoint with the output (spectra, gauge groups, low energy interactions).

At the same time, indications suggested that the heterotic string would need be in strong

coupling in order for some effects to be compatible with data. At the same time, type-I

theory emerged as a strong-coupling dual of the heterotic theory and SM-searches started

to look in open string theory vacua.

Open string theory vacua, alias orientifolds, [17–19], provided a fresh new perspective in

the search for the SM, [20]–[23]. They allowed a bottom-up approach, [24, 25] to building

the SM, by utilizing the geometrized language offered by D-branes supporting the SM

interactions and particles.

The algorithm can be described as follows. One first constructs a type II ground state,
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that involves a closed CFT describing the compactification. Then an appropriate orientifold

projection is applied on the closed string sector. An open string sector is subsequently

constructed by populating the allowed boundary states of the bulk CFT. This part of the

algorithm should be thought of as inserting D-branes in the closed string vacuum in a way

compatible with the 2d-dynamics. In particular the D-brane configuration is such that it

guarantees local (as opposed to global) stability. At this stage one can engineer the gauge

group and spectrum with rather milder constraints than those that are imposed at the

end. Therefore a lot of the model building choices are decided early on. Moreover, in this

context, one first constructs the SM family of branes, defined as the collection of boundary

states that give rise to the chiral SM particles.

Finally, once the SM stack has been engineered to one’s satisfaction, the stringy, tad-

pole cancellation constraints are imposed. This can be done by adding in a modular

fashion a “hidden sector”, ie. one or more brane stacks, that typically do not include light

observable-hidden strings. The procedure stops when tadpoles are eventually canceled.

This procedure has been algorithmized for a large set of RCFT building blocks, and used

to provide large lists of SM-like orientifold vacua, [26, 27].

In [29] a class of orientifold vacua were studied, constructed from six copies of the

second Gepner model (k=2). The original motivation was to study quasi-realistic vacua

using CFT building blocks that are free CFTs. A very interesting feature of the vacua

described in [29], was that the 3 SM families do not originate from the same D-branes. This

has important consequences because of the generic presence of anomalous U(1) symmetries

in orientifold vacua.

Anomalous U(1) symmetries are ubiquitous in orientifolds. It has been argued early

on [16, 24], that any SM orientifold realization must have at least one and generically three

anomalous U(1) symmetries, that make the most characteristic signature of orientifold

vacua. Their phenomenological implications are diverse, [31]–[38].

Their most important property, that impacts importantly on the dynamics of the

D-brane stack is that they provide numerous selection rules on the effective couplings.

In particular, they may be responsible for the absence of the µ-term, Yukawa couplings,

baryon and lepton violating couplings etc. However, as anomalous U(1)’s are effectively

broken as gauge symmetries, the selection rules they provide need qualification. As the

breaking of the gauge symmetry happens via the mixing with RR forms, the global U(1)

symmetry remains at this stage intact. There are two types of realizations of anomalous

U(1) symmetries as global symmetries. If D-terms force charged fields to obtain vev’s

then the global U(1) symmetry is broken. If on the other hand no vev’s are generated the

anomalous U(1) global symmetry remain intact in perturbation theory.

However, the story must change beyond perturbation theory for two reasons. The first

is that we do not expect exact (compact) global symmetries to survive in a gravitational

theory. The second (in agreement with the first) is that there are always non-perturbative

effects that violate the associated global symmetry. The argument is simple. A U(1)

transformation involves a shift of RR field. The associated D-instanton effect which is

charged under the same RR field (the Stuckelberg axion) will violate by definition the

associated global U(1) symmetry. The effect is a D-instanton effect, whose field theory limit
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sometimes may admit a gauge instanton interpretation, [39]–[41]. Therefore, couplings a

priori forbidden by anomalous U(1)’s can have three potential fates: (a) Be generated by a

vev if the U(1)’ is broken by a charged scalar vev. (b) Be generated by an instanton effect,

if there is an instanton with the requisite number of zero modes associated with a given

coupling. (c) Remain zero as no vev or instanton can generate it.

In view of the discussion above we may appreciate why, segregating SM families on

different D-branes may provide non-trivial selection rules of Yukawa couplings, generating

eventually a hierarchy of masses. Indeed, in the vacuum studied in [29], for one of the quark

family, no Yukawa couplings were allowed by the anomalous U(1) symmetries. Therefore,

the Yukawa’s for this family, if generated at all, they must be generated by D-instantons and

have therefore a natural exponential suppression with respect to the other two families.1

A pertinent question at this stage is: are masses and mixings of the SM calculable

in terms of a more fundamental theory (in the same sense that the energy spectrum of

hydrogen is calculable) or are they “environmental parameters” that happen to have these

values although there are other SM-like vacua where their values are different. Most physi-

cists believe in the first possibility and it is fair to say that in the absence of convincing

evidence for the second it is the most appealing one. However in the last few years there

is evidence, in the context of string theory that many aspects of SM-like ground-states are

not unique, but there is a large landscape of vacua with varying properties. We will not

have anything to say on this issue that goes beyond our efforts in this paper. We do not

pretend either to provide mechanisms that uniquely predict masses and mixings, but we

explore how the associated hierarchies could be accommodated in orientifold vacua.

In this paper we will explore different effects that are prone to generate interesting

hierarchies between fermion masses. Our scope is exploratory: there will be no concrete

models of masses and mixings neither predictions/postdictions for experiment. The goal

is to identify D-brane configurations that are promising when it comes to generating the

fermion hierarchy. This is the problem we address in this paper. The next step will be to

construct such interesting D-bane configurations.

There are several effects that can produce hierarchically different Yukawa-

like couplings.

• Tree-level cubic Yukawa couplings. This is the generic case when such couplings are

allowed. Their coefficient depends in general on several ingredients. It is always

proportional to the ten-dimensional dilaton but also internal volumes, and other

backgrounds fields (internal magnetic fields, fluxes) enter. They may be correlated

with the associated gauge couplings if the fields participating come from overlapping

D-branes. They may also be free of volumes if the branes intersect at points. Such

variations are enough some times to explain the mass hierarchy inside a family. An

example of this was presented in [16] in model B. There the tree-level Yukawa’s

are such that once the top mass is fixed, the bottom and tau masses follow. It is

important that such couplings are in the perturbative regime for the picture to be

1An exponential suppression of Yukawa’s can also happen because of world-sheet instanton effects. In

the particular case of vacua constructed from intersecting D6 branes this idea was explored in [43].
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consistent. Another possibility that we study is that tree level couplings respect a

discrete symmetry (that may be a local symmetry of the D-brane configuration). In

such a case small variations of the closed string moduli may lead to an appropriate

hierarchy of Yukawa couplings.

• Higher order couplings. These are couplings that appear beyond the cubic level. They

necessarily involve more fields than the SM fields. These extra fields must obtain an

expectation value in order for an effective Yukawa coupling to be generated. Then

such couplings compared to the previous case carry an extra factor of
(

〈φ〉
Ms

)n
with n a

positive integer. Depending on the compactification the string scale may be replaced

by a compactification scale. If 〈φ〉 ≪ Ms this generates a hierarchy in the associated

Yukawa coupling. On the other hand the regime 〈φ〉 ≫ Ms is non-perturbative.

• D-Instanton-generated couplings. Such couplings violate the anomalous U(1) sym-

metries. They are suppressed by exponential instanton factors of the form e−1/g

where g is linearly related to the ten-dimensional coupling constant and depends also

on the volume of the cycle the D-instanton is wrapped-on, as well as on other data

(magnetic fields, fluxes etc). In the particular case of gauge instantons g is the square

of the associated gauge coupling. In the well-controlled regime, g ≪ 1 and multi-

instantons are suppressed. beyond the instanton-action factor, instanton-generated

couplings carry a characteristic scale. This is determined by the string scale, or other

volume factors affecting the world-volume factor of the D-instanton. Finally there is

a one-loop determinant that is generically of order O(1).

In this paper we will explore structures that allow exploiting a combination of the

couplings above to generate mass and mixing hierarchies. One strategy will be the following:

1. We start from a D-brane configuration in the simplest bottom-up context, as first

described in [24] and generally defined in [27]. It is described by a set of SM and

(anomalous) U(1) charges for the SM particles, following the rules of D-brane engi-

neering. In particular, generalized anomaly cancellation is imposed. All cubic Yukawa

couplings allowed by the gauge symmetries are considered non-zero. We search and

consider only bottom-up configurations that allow only one non-zero Yukawa cou-

pling in each of the Up and Down quark 3 × 3 mass matrices. The overall scale of

masses is set by the vev’s of the two electroweak Higgses Hu and Hd.
2

2. Apart from the SM particles and Higgses, one more scalar Φ will be advocated to

help with the generation of higher order Yukawa couplings. Its vev will be selected

to fit appropriate masses.

2Orientifold realizations of the SM even in the absence of supersymmetry, necessitate the presence of

at least two Higgses Hu and Hd with different charges under the Chan-Paton (CP) group. The reason is

that the Higgs carries always an extra U(1) charge, associated typically to an anomalous U(1). The U and

D quarks always have different values of such a U(1) charge in order to accommodate their difference in

hypercharge. Therefore they couple to Higgses with different such U(1) charges.
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3. If a given Yukawa coupling is still zero, then a instanton contribution is advocated.

Different Yukawa couplings generated by the same instanton (same violation of U(1)

charges) will be considered to have the same exponential factor. This is stricter that

what could really happen, as the same instanton can wrap two different cycles with

very different volumes and can thus generate very different exponential factors. We

will not use however this option in this paper. We will choose the exponential factors

at will to reproduce the masses.

4. The rest of the coefficients in the mass matrices are dimensionless couplings that we

will assume to be of the same order of magnitude and we will take them ad-hoc to vary

in the interval [0.1,0.5]. A configuration will be deemed promising if it can reproduce

the masses and mixings of the SM with dimensionless couplings in that range.

Such a strategy rests on a set of choices that could be otherwise. For example sometimes

couplings can be much smaller than the range we choose. We do not pretend that our

choices are universal. They provide however a general first assessment of D-brane vacua as

to their ability to generate multiple scales for masses and mixings.

It should be noted that the previous context for generating the mass hierarchies of the

SM, does not rest on family symmetries. As was first analyzed in [27], potential continuous

family symmetries in the context of orientifold vacua are very different from those that

have been explored in the QFT literature. The reason is simple: the doublet-triplet of

quarks is constrained to have its two end-points on the SU(3) and SU(2) stacks of branes.

Therefore the only extra charges it can carry are the U(1)3 of the SU(3) charge (it is always

present and it can be identified with the baryon number) and potentially the U(1)2 of the

SU(2) in the case of a complex weak stack (this U(1) is not present if the group is Sp(2)).

In the latter case of real weak stack, there is absolutely no difference between the

three doublet-triplets, and they can carry no extra charges. In the first case of a complex

weak stack, the doublet-triplets can be distinguished by the U(1)2 charge that can take

two possible values, ±1. Again at most one doublet-triplet can be different from the other

two. No non-abelian charges are allowed in either case.

Even for discrete family symmetries the situation is different. In previous implemen-

tations such discrete symmetries come in two copies acting on the whole family on the left

and on the right (see for example [4]). Here they typically come in one copy. A represen-

tative example are the discrete symmetries that appear when branes are stuck at orbifold

singularities [25]. We will explore the impact of such symmetries on the mass spectrum

later on in this paper.

Our results are as follows: in section 3.1 we found all possible textures of the mass

matrices for the quarks and leptons for brane configurations with three, four and five stacks

of branes.3 As stated above we aim to find among the possible orientifold vacua all models

which give mass matrices with all the three scales. We found no such solutions in the case

of three brane stacks.

3It is worth mentioning that the five-brane stack configurations realize the most general mass form.

Thus, we do not continue our analysis on vacua with six or more D-brane stacks.
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For four brane stacks we found (in section 4) a vacuum in which the highest mass scale

is related to Yukawa terms, the intermediate mass scale to instantons while the lowest

scale to higher order terms. The CKM matrix computed for this model agrees with the

experimental result. We also found a vacuum which satisfies the CKM constraint but only

with Yukawas and higher order terms in the lepton mass matrices. In this model, there is

no 1-1 correspondence between the fermion masses in each family and the Yukawa, higher

order and instantonic terms. In the particular case of the Kiritsis, Schellekens, Tsulaia

(KST) model [29] we found a vacuum with only Yukawas and instantons which does not

satisfy the CKM constraint.

Finally in the five stacks case we found a vacuum with three mass scales both in the

quark and lepton sector which satisfies the CKM constraint.

The plan of our paper is as follows: In section 2 we give the description of D-brane

configurations that successfully realize the SM spectrum. In section 3 we study the general

form of the mass matrices for the quarks and leptons that is allowed in various configu-

rations with three, four and five stacks of branes. In section 4 we concentrate on vacua

with four and five branes with mass matrices with all the three scales. In section 5 we

concentrate on an orientifold vacuum with a Z3 discrete symmetry and we analyze the

mass generation mechanism. In section 6 we present our conclusions.

In the appendix we provide more details about the three, four, and five brane stack

vacua. We also provide the mass matrices for the quark, leptons and neutrinos of several

bottom-up configurations.

2 Bottom-up description of D-brane configurations

A D-brane realization of the SM requires several stacks of branes. The minimum number

of stacks is three [24] and all three-stack realizations were classified in [15]. Most common

realizations utilize four stacks. There are also realizations with a higher number of stacks

(an example is given in [28]).

All such configurations have in common a unitary stack of three branes (the “color” or

A stack), a stack of two branes (the “weak” or B stack) and then various numbers of extra

branes. In the simplest case they can be taken as single branes, but non-abelian stacks are

also possible provided the associated gauge symmetry is eventually broken. Although this

was explored in [27] we will not entertain this possibility here. We will only consider two

extra stacks, C and D each made up of a single (complex) brane.

Gauge fields are described by open strings with both endpoints on the same stack and,

generically, they give rise to Unitary, USp and SO groups. In particular the weak stack

may have a U(2) or Sp(2) group. We will assume a U(2) group, and we will mention at

the end differences in the Sp(2) case.

The rest of the SM particles are open strings attached on different (or the same)

stack providing bi-fundamental (as well as symmetric or antisymmetric) representations.

The hypercharge is a linear combination of the abelian factors of each stack. Typically

the other linear combinations of the abelian factors are anomalous.4 These anomalies are

4B − L in some cases may not be anomalous.
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Figure 1. The three types of mass generating terms: The configuration A allows for a Yukawa

term. However, in the B and C cases no Yukawa terms can be generated. In the B case there is a

higher order term due to the presence of a field Φ, while in the C case there is a contribution from

an instanton term E2.

canceled by the Green-Schwarz mechanism and by generalized Chern-Simons terms [30].

The anomalous U(1) gauge bosons are massive and their masses can vary between the

string scale or much lower depending on appropriate volume factors [44].

The quark doublets Q are described by strings with one end on the ‘A-stack and the

other on the B-stack of branes. The quark singlets U c,Dc are described either by strings

which are stretched between stack A and the two extra U(1) C and D stacks. It is also

possible to be generated by strings with both ends on the “color”-brane. In this case

they transform in the antisymmetric representations of SU(3) which is equivalent to the

anti-fundamental. The lepton doublets L are described by strings which are stretched

between the B stack and the C,D stacks while the lepton singlets Ec are described either

by strings that are stretched between stacks C,D or by strings with both ends on the

same single brane (B,C,D). In this case they transform in a symmetric representation of

the corresponding abelian factor. The right-handed neutrinos N c being SM singlets are

either described by strings attached on the SM-branes or they may come from the hidden

sector of the model. In the first case they can be either stretched between the C,D stacks

or they might have both ends on the B brane. In such a case they transform under the

antisymmetric representation of the SU(2) which is equivalent to the singlet.

3 Mass matrices of the SM stack

Our main interest is to study the mass generation mechanism in orientifolds. As we men-

tioned above the SM particles5 are described by open strings whose ends are attached on

various stacks of branes. In this case many Yukawa terms are forbidden due to the fact

that they are not gauge invariant under the appropriate U(1) symmetries.

An example of the four stacks’ case is sketched in figure 1, where Q ∼ (1,−1, 0, 0),

U c
1 ∼ (−1, 0, 0, 1), U c

2 ∼ (−1, 0, 1, 0) and Hu ∼ (0, 1, 0,−1).6 The Yukawa term QU c
1Hu is

5Our statements in this section do not assume spacetime supersymmetry.
6The notation (qA, qB , qC , qD) indicates the U(1) charges of a state under the four diagonal U(1) sym-

metries of the four D-brane stacks. The A stack contains the color U(3) group. The B stack contains the

weak U(2) group. The B and C stacks are assumed to have U(1) groups.
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uncharged under the four abelian factors and therefore is allowed while the term QU c
2Hu

has charge (0, 0, 1,−1) and thus forbidden. Such term could not contribute to the quark

mass matrix. Here we will entertain the possibility that there are non-zero contributions

for these mass matrix entries from higher-order terms and non-perturbative contributions.

Higher order terms must contain fields which are not present in the SM spectrum (with

the exception of the neutrino mass terms). It is a generic feature of stringy spectra D-brane

that additional non-chiral fields are present. In orientifolds some of them are important

for generalized anomaly and tadpole cancellation. These fields can provide higher-order

terms in the mass matrices. For example, we consider one of these additional field φ1 with

charges (0, 0,−1, 1), a SM singlet, originating from the non-chiral part of the spectrum. We

also assume that φ1 acquires a non-zero vev Vφ1
. In this case, the effective action contains

a higher-order term of the form QU c
2Huφ1 that provides a quark mass term proportional

to VuVφ1
/Ms where Vu is the vev of Hu and Ms is the string scale. Since Vφ1

/Ms . 1 in

the perturbative regime, such a contribution is smaller than the leading Yukawa term. For

the same reason, higher-order terms that are in principle allowed are suppressed by higher

powers of Ms. Such scale differences in the mass matrices could be used to explain the

hierarchy between the fermion masses.7

When neither Yukawa nor higher order terms are allowed, we may consider non-

perturbative contributions. D-instanton contributions give Yukawa couplings of the form

QU c
2Hu e−SI where I denotes the type of instanton and the action, the coefficient e−SI in-

dicates the instanton action, SI is proportional to the internal volume the instanton brane

wraps and it may also depend on other closed string moduli, [39–41]. For internal volumes

a few times the string scale such contributions are exponentially suppressed. Summarizing,

the following Yukawa-like terms can contribute to the mass matrix:

• Yukawa terms of the form giQuHu

• Higher order terms of the form giQuHuφ/Ms where φ a scalar field with zero hyper-

charge. Such terms are suppressed by the string scale Ms.

• Instanton terms of the form gi QuHu × e−SI . We will assume that e−SI . 1 so that

we can neglect multi-instanton terms.

In all the previous terms the gi’s are dimensionless coupling constants, which we assume

to be of the same order O(1) and in the perturbative regime.8

3.1 Mass matrix forms

In this section we study the general form of the mass matrices for the quarks and leptons

that is allowed in various configurations with three, four and five stacks of branes.

We consider only vacua with two Higgs doublets Hu, Hd which in particular could also

accommodate the MSSM.

7And indeed it was used in [11–13].
8In practice and for concreteness we will assume them to take values between 0.1-0.6 although the precise

bounds are also a matter of taste.
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As mentioned in the introduction, in all orientifold vacua either all quark doublets are

described by the same type of charges (Q1 = Q2 = Q3) or one quark doublet is different

from the other two Q1 6= Q2 = Q3. Therefore, as far as U(1) selection rules are concerned

either all rows in the mass matrix will have the same type or one will be different from

the other two.

After studying all possible bottom-up brane configurations we find that the resulting

quark mass matrices are of the following form:9

MForm−1 =







X X X
X X X
X X X






(3.1)

MForm−2 =







X Y Y
X Y Y
X Y Y






∼







X X X
Y Y Y
Y Y Y






(3.2)

MForm−3 =







X Y Y
Z U U
Z U U






(3.3)

MForm−4 =







X Y Z
X Y Z
X Y Z






(3.4)

MForm−5 =







X Y Z
U V W
U V W






(3.5)

where X ,Y,Z,U ,V,W denotes terms of the same type, either Yukawa, higher-dimension

or instantonic terms. While there can be only one kind of Yukawa and higher-dimension

terms, in general there can be several different instantonic terms.10 For example there are

vacua in which the Z’s and the U ’s in (3.3) are all instantons but they are different from

each other. Specific examples will be given in the following sections. Note that we consider

as equivalent the two matrices (3.2) since they have the same hierarchy in their eigenvalues.

In the lepton sector, in addition to (3.1)–(3.5) we can also have vacua where all the

entries in the mass matrix are different:

MForm−6 =







X Y Z
U V W
R S T






(3.6)

Note that there are vacua in which the “weak” stack provides an Sp(2) instead of U(2).

Since Sp(2) is isomorphic to SU(2) we do not have in this case the U(1) factor associated

9Some of the entries below may be zero, compatible with associated formats. This is an interesting

possibility which we will not however pursue in this paper. We will only note the mass-matrix zeros cannot

be of the type discussed in the earlier literature as they have to be compatible with the forms below.
10This arises because there could be several instantons contributing, wrapping different compact internal

cycles and therefore giving contributions of different size.
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to this stack of branes. Therefore, the quark doublets which are stretched between the A

and the B branes have the same charges (+1,0,0) under the U(1)A × U(1)C × U(1)D and

therefore the three doublets have all the same U(1) charges. In this case, the quark mass

matrices can only have one of the forms: (3.1), (3.2), (3.4).

Below we give a classification of the D-brane realizations of the SM considering the

possible form of the quark mass matrices. We restrict this analysis to the quark sector

since in the lepton sector all mass matrix forms (3.1)–(3.6) are allowed in each realization.

Three Stacks: the U(3) × U(2) × U(1) realizations. This setup has been first

considered in detail in [15]. In this case there are two classes of vacua characterized by

two different hypercharge embedding: Y = −1
3Qa − 1

2Qb and Y = 1
6Qa + 1

2Qc (the charge

assignments for all the SM fields is given in appendix B.1).

• For Y = −1
3Qa − 1

2Qb, the only possible form for both quark mass matrices MU and

MD is (3.1).

• For Y = 1
6Qa + 1

2Qc, there are two different possible charge assignments for the d-

quarks allowing the corresponding mass matrix to be of the form either (3.1) or (3.2).

Four Stacks: the U(3)A ×U(2)B ×U(1)C ×U(1)D realizations. In this case, there

are seven different hypercharge embeddings (see appendix B.2).

• For Y = −1
3Qa − 1

2Qb + Qd, both MU , MD can be of the form (3.1), (3.2). This

hypercharge embedding was identified as model A in [16].

• For Y = 2
3Qa + 1

2Qb + Qc, MU can be of the form (3.1), (3.2) while MD can only be

of the form (3.1). This hypercharge embedding was identified as model B in [16].

• For Y = 1
6Qa + 1

2Qc − 1
2Qd (also known as the Madrid embedding, [46]), MU can be

of the form (3.1)–(3.3) while MD can be of the form (3.1)–(3.5).

• For Y = 1
6Qa + 1

2Qc − 3
2Qd, MU can be of the form (3.1), (3.2) while MD can be of

the form (3.1)–(3.3).

• For Y = −1
3Qa − 1

2Qb, MU can only be of the form (3.1) while MD can be of the

form (3.1), (3.2), (3.4).

• For the last two embeddings11 Y = −5
6Qa − Qb − 1

2Qc + 3
2Qd and Y = 7

6Qa + Qb +
3
2Qc + 1

2Qd both MU , MD are of the form (3.1).

It is worth noting that in the Madrid embedding we get the highest number of different

types of mass matrices. This is due to the fact that the C and D stacks contribute equally to

the hypercharge allowing many alternative configurations. In the Madrid class of vacua it is

possible to have charge assignments such that for the quarks, Q1 6= Q2 = Q3, U1 6= U2 = U3

and D1 6= D2 6= D3. This in turn implies that both MU and MD can have three different

kind of entries. In all the other vacua we considered, at least one of the following charge

assignment, either Q1 = Q2 = Q3 or U1 = U2 = U3 or D1 = D2 = D3, is realized.

11These embeddings were never found in the extensive search of [27]. Their existence is therefore in doubt.
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Five Stacks: the U(3)A × U(2)B × U(1)C × U(1)D × U(1)E realizations. In this

framework, we found 23 possible hypercharge embeddings. Among these embeddings, 12

of them have either MU or MD or both on them of the form (3.1). 8 of them have either

MU or MD or both on them of the form (3.1) or (3.2). The remaining three are the most

interesting ones where the mass matrices MU and MD can have at least three scales:

• For Y = 1
6Qa + 1

2Qc − 1
2Qd − 3

2Qe and Y = 1
6Qa + 1

2Qc − 1
2Qd, MU can be of the

form (3.1)–(3.3) while MD can be of the form (3.1)–(3.5).

• For the “Madrid-like” 5 stacks extension: Y = 1
6Qa + 1

2Qc + 1
2Qd + 1

2Qe where all

single branes democratically contribute with a factor 1/2 to the hypercharge, both

MU and MD can be of the form (3.1)–(3.5).

Note that as in the four-stacks’ case, the Madrid-like embedding gives the highest number

of different mass matrices. In addition, only in this context we can have both MU , MD of

the form (3.5).

4 Vacua with 3-scales in all fermion mass matrices

In each of the SM mass matrices for the quarks and leptons there is a large hierarchy. In

this work, we want to explore the possibility that the different scales are related to the

three different types of possible Yukawa-like terms. Therefore, we consider vacua where

the quark and lepton mass matrices have the forms (3.3), (3.6). This excludes all three

stack constructions (B.1) as well as all four stack constructions (B.2) apart from a subclass

of the “Madrid” vacua (B.2).12

In order to satisfy the above requirements, the vacuum should contain one quark

doublet different from the other two (say Q1 6= Q2 = Q3) as well as a different right-

handed U c and Dc from the other two (say U c
1 6= U c

2 = U c
3 and Dc

1 6= Dc
2 = Dc

3). This

choice ensures the “3-scales” in the quark mass matrices and fixes all the quarks since each

of them has only two possible descriptions. For the choice of leptons we have some more

freedom since each lepton doublet and singlet can get several different charge assignments

(as can be seen in (B.2)). A subclass of the Madrid vacua that satisfy our requirements is:

Q1 : (1,+1, 0, 0), Q2, Q3 : (1,−1, 0, 0)

U c
1 : (−1, 0,−1, 0), U c

2U c
3 : (−1, 0, 0,−1)

Dc
1 : (−1, 0,+1, 0), Dc

2D
c
3 : (−1, 0, 0,+1)

Lc
1 : (0, 1,−a, a − 1), Lc

2L
c
3 : (0, 1,−b, b − 1)

Ec
1 : (0, 0, c, d), Ec

2 : (0, 0, e, f), Ec
2 : (0, 0, g, h)

N c
1,2,3 : (0,±2, 0, 0) (4.1)

where a, b = (0, 1) and c, d, e, f, g, h = (0, 1, 2) with the constraint |c + d| = |e + f | =

|g + h| = 2. Notice that the lepton doublets can all have different charge assignments in a

12In [50, 54], several other embeddings of the MSSM in D-brane configurations have been analyzed with

focus on Yukawa couplings, and masses.
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single vacuum. The two MSSM Higgses are described by

Hu : (0,−1,+1, 0)

Hd : (0,−1,−1, 0) (4.2)

and we consider two additional scalars with zero hypercharge φ1 and φ2, coming from the

non chiral part of the spectrum:

φ1 : (0, 0,−1,+1)

φ2 : (0, 0,+1,−1) . (4.3)

The brane configurations that we consider here are subject to two constraints: the

spectrum must match that of the MSSM in the chiral sense, with chirality defined with

respect to SU(3)×SU(2)×U(1). Furthermore all cubic anomalies in each factor of the full

Chan-Paton group must cancel. This must be true because we want to be able to cancel

tadpoles, and tadpole cancelation imposes cubic anomaly cancelation (mixed anomalies are

canceled by the generalized Green-Schwarz mechanism). The tadpoles are usually canceled

by adding hidden sectors, which adds new massless states to the spectrum. These are non-

chiral and thus they do not alter the anomaly cancelation mechanism in the MSSM sector.

As described in [27] the cubic anomaly cancelation conditions that are derived from tadpole

cancelation are the usual ones for the non-abelian subgroups of U(N), N > 2. Vectors

contribute 1, symmetric tensors N + 4 and anti-symmetric tensors N − 4, and conjugates

contribute with opposite signs. But the same condition emerges even if N = 1 and N = 2.

This means that for example a combination of three vectors and an anti-symmetric tensor

is allowed in a U(1) factor. This is counter-intuitive, because the anti-symmetric tensor

does not even contribute massless states, so that one is left with just three chiral massless

particles, all with charge 1. The origin of the paradox is that it is incorrect to call this

condition “anomaly cancelation” if N = 1 and N = 2 and if chiral tensors are present. It is

simply a consequence of tadpole cancelation; the anomaly introduced by the three charge

1 particles is factorizable, and canceled by the Green-Schwarz mechanism.

Using the above constraints we finally get eight vacua which are anomaly free and with

3 different kind of terms in the quark and lepton mass matrices. Inserting the values of

table 1 in (4.1) we get the different charge assignments for each vacuum.

In the appendix F we provide a complete description of the mass matrices.

4.1 Vacuum 1: a = 1, b = c = e = h = 0, d = f = g = 2.

As an example, we choose the first vacuum in table 1. The corresponding mass matrices

for the quarks have the form:

MU = Vu







g1 g2vφ1
g3vφ1

g4E1 g5E2 g6E2

g7E1 g8E2 g9E2






(4.4)

MD = Vd







q1 q2vφ2
q3vφ2

q4E1 q5E3 q6E3

q7E1 q8E3 q9E3






(4.5)

– 13 –



J
H
E
P
0
8
(
2
0
0
9
)
0
2
6

vacuum a b c d e f g h

1: 1 1 0 2 1 1 2 0

2: 0 1 0 2 2 0 2 0

3: 1 0 0 2 1 1 1 1

4: 1 0 1 1 2 0 2 0

5: 0 1 0 2 0 2 1 1

6: 0 1 1 1 1 1 2 0

7: 1 0 0 2 0 2 2 0

8: 0 0 0 2 1 1 2 0

Table 1. The eight consistent vacua with 3-scales in each of the mass matrices of the quarks

and leptons.

where vφ1
= Vφ1

/Ms, vφ2 = Vφ2
/Ms and Ei = e−V olIi

Ii are the dimensionless instantons.

These two matrices have the form (3.3) where X is a Yukawa term, Y’s are higher terms

and the Z’s and the U ’s are instantons E1 and E2 respectively. The above matrices are

the same for all the eight vacua in (4.1). The mass matrices for the leptons and neutrinos

change form and in this specific vacuum we have:

ML = Vd







l1E4 l2vφ1
l3

l4E4 l5vφ1
l6

l7E4 l8vφ1
l9






(4.6)

MN =



















0 0 0 g11VuE1 g12VuE1 g13VuE1

0 0 0 g21VuE1 g22VuE1 g23VuE1

0 0 0 g31VuE1 g32VuE1 g33VuE1

g11VuE1 g21VuE1 g31VuE1 q11MsE5 q12MsE5 q13MsE5

g12VuE1 g22VuE1 g32VuE1 q21MsE5 q22MsE5 q23MsE5

g13VuE1 g23VuE1 g33VuE1 q31MsE5 q32MsE5 q33MsE5



















(4.7)

where gi, qi, li and gij, qij are dimensionless couplings assumed to be of the same order.13

It is easy to check that neither Yukawa nor Majorana terms are present in the neutrino

mass matrix for the vacua of table 1. The only way to get such terms is by instantonic

contributions E1 and E5. The E1 are the same dimensionless instantonic contribution that

also appear in the U -quark mass matrix (4.4).

The parameters of our vacuum are evaluated by equating the eigenvalues of all the mass

matrices to the running values of the quark, lepton and neutrino masses at various scales.

If the vacuum is supersymmetric, the low-energy effective action has softly broken Susy and

therefore all couplings run logarithmically. In the non-supersymmetric case, some other

solution to the hierarchy problem must be invoked so that couplings run logarithmically.

13The tiny neutrino masses are generated through the seesaw mechanism. Schematically the terms that

can contribute to the neutrino mass matrix have the following form:

gijLiN
c
j Hu + qijMsN

c
i N

c
j (4.8)
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The values of the quarks, leptons and neutrino masses at various scales have been com-

puted in the MSSM framework [49]. Since there are several unknown parameters in each

mass matrix, we fix some of them and we solve the system for the remaining ones. We per-

form this task by requiring that all the dimensionless couplings must be of the same order.

For example, in the MU matrix, all entries in the 2 × 2 matrix:

(

g5 E2 g6 E2

g8 E2 g9 E2

)

(4.9)

should be of the same order due to our constraint. This requirement is not in general

satisfied in the MSSM. In our analysis we explore three possibilities for the value of the

string scale: Ms = 1 TeV, Ms = 1012 GeV and at Ms = ΛGUT = 2 × 1016 GeV scale.

Here we give a brief description of the strategy we followed in order to determine the

values of the vev’s and instantons. Each mass matrix entry is parametrized as a product

of a coupling gi with one of the relevant parameter, namely a plain Yukawa term, a vev

or an instanton. We fix some of these parameters to reproduce for example the masses of

the heaviest quarks. The remaining parameters are fixed by imposing the equality of the

mass matrices eigenvalues with the experimental values. The couplings gi are used as fine

tuning parameters varying their values at random in a small interval [0.1, 0.6].

For the present vacuum (as well as for the second and third in table 1) we were able

to find solutions where

Vu ∼ mt, Vd ∼ mb

E1 ∼ E2 ∼ mc/mt

E3 ∼ E4 ∼ ms/mb

vφ1
∼ mu/mt

vφ2
∼ md/mb (4.10)

where mi are the masses of the corresponding quarks, and all couplings |gi|, |qi|, |li|, |gij|,
|qij| are within the range [0.1, 0.6].

As we mentioned before, in order to get the tiny neutrino masses we have to implement

the seesaw mechanism. The main idea of this mechanism can be sketched in a simple case

of a 2 × 2 matrix:

MN ∼
(

0 m

m M

)

(4.11)

where M ≫ m. This matrix has one eigenvalue which is proportional to M while the other

one is proportional to m2/M . The previous result can be easily extended in our case of

the 6 × 6 neutrino mass matrix (4.7). In this matrix, all the entries of the off diagonal

3 × 3 submatrices, module the couplings gij, are fixed by the previous requirements (4.10)

giving mass scales that range from 10−1 − 103 MeV. Therefore, to obtain the tiny neutrino

mass the scale of the lower block diagonal 3× 3 submatrix must be of order of the highest
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scale of the theory, i.e. Ms. Indeed, following the same procedure we used in the quark

and lepton sector, we find at different scales:

1TeV scale : E5 ∼ 0.654

1012 GeV scale : E5 ∼ 0.754

ΛGUT scale : E5 ∼ 2.5 × 10−7 (4.12)

which are in the expected range.

Mixing matrices. Using the above values for the couplings and vev’s, we can proceed

and evaluate the Cabbibo - Kobayashi - Maskawa Matrix (CKM). For the above vacuum,

the matrix is:

CKM(1TeV) =







0.970 0.240 0.007

0.240 0.970 0.013

0.010 0.011 0.999






(4.13)

that has to be compared with the experimental data [53]:

CKM(Data) =







0.97419 ± 0.00022 0.2257 ± 0.0010 0.00359 ± 0.00016

0.2256 ± 0.0010 0.97334 ± 0.00023 0.0415 ± 0.001

0.00874+0.00026
−0.00037 0.0407 ± 0.0010 0.999133+0.000044

−0.000043







(4.14)

Similarly, we evaluate the neutrino mixing matrix:

UNeutrino Mixing =







−0.42 − 0.23i −0.53 + 0.38i −0.19 − 0.54i

0.69 − 0.21i −0.34 + 0.10i −0.55 + 0.17i

0.20 − 0.44i 0.65 −0.16 − 0.55i






(4.15)

The mixing matrices at 1012 GeV and ΛGUT are:

CKM
(

1012 GeV
)

=







0.974 0.221 0.020

0.221 0.975 0.003

0.019 0.007 0.999






(4.16)

UNeutrino Mixing(10
12 GeV) =







0.56 − 0.47i 0.05 − 0.01i 0.66 + 0.06i

−0.47 + 0.36i 0.42 − 0.25i 0.61 + 0.09i

0.29 − 0.01i 0.86 −0.31 − 0.24i






(4.17)

at Ms = 1012 GeV, and

CKM(ΛGUT) =







0.971 0.235 0.017

0.235 0.971 0.002

0.017 0.001 0.999






(4.18)

UNeutrino Mixing(ΛGUT) =







0.82 0.11 − 0.44i 0.20 + 0.24i

−0.38 − 0.32i 0.56 − 0.12i 0.33 + 0.54i

0.19 + 0.14i −0.05 + 0.67i 0.69






(4.19)

at Ms = ΛGUT.
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Ms Vu Vd vφ1
vφ2

E1 E2 E3 E4

1TeV 644000 8920 0.62 0.34 1.66 × 10−6 0.0008 0.003 0.35

1012 GeV 452960 3160 0.53 0.52 1.54 × 10−6 0.0006 0.004 3 × 10−9

ΛGUT 378800 2440 0.56 0.55 1.32 × 10−6 0.0006 0.004 5 × 10−14

Table 2. We provide the values of the Yukawa terms Vu, Vd, the higher order terms vφ1
, vφ2

and

the instanton terms E1, E2, E3, E4 at the scales of 1TeV, 1012 GeV and at GUT scale. Notice that

we have three scales: one related to the Yukawa, one related to the higher order and one related to

the instanton terms.

4.2 Vacuum 4: a = c = d = 1, b = f = h = 0, e = g = 2.

As we mentioned before, among the eight possible vacua in table 1 we were able to find

solutions of the form (4.10) only for the first three models. Here we concentrate on the

fourth model in table 1, i.e. a = c = d = 1, b = f = h = 0, e = g = 2.

In this case the corresponding quark mass matrices MU , MD have the form given

in (4.4), while the mass matrices for the leptons and neutrinos have a different form:

ML = Vd







l1vφ2
l2 l3

l4 l5vφ1
l6vφ1

l7 l8vφ1
l9vφ1






(4.20)

where li are dimensionless couplings assumed to be of the same order and:

MN ∼



















0 0 0 g11VuE1 g12VuE1 g13VuE1

0 0 0 g21VuE2 g22VuE2 g23VuE2

0 0 0 g31VuE2 g32VuE2 g33VuE2

g11VuE1 g21VuE2 g31VuE2 q11MsE4 q12MsE4 q13MsE4

g12VuE1 g22VuE2 g32VuE2 q21MsE4 q22MsE4 q23MsE4

g13VuE1 g23VuE2 g33VuE2 q31MsE4 q32MsE4 q33MsE4



















(4.21)

where E1, E2 are the same dimensionless instantonic contributions that also appear in the

U -quark mass matrix (4.4).

We can repeat the same procedure and evaluate the values of the vev’s and instantons

at various scales. In details we fix the vev’s of the two Higges Vu, Vd to the values of the

masses of the heaviest quarks mτ ,mb at this scale. This choice implies that the higher

mass scale comes from the Yukawa terms. In order to evaluate the values for the rest of the

unknown parameters, we choose at random the norm of the couplings |gi|, |qi|, |li|, |gij|, |qij|
in a small interval of [0.1, 0.6] and we solve the systems equating the three eigenvalues of

each matrix with the masses of the relevant particles.

To summarize we have computed these values at the scales of 1TeV, 1012 GeV and at

GUT scale. The results are given in the following table 2:

Notice that we have three scales: one related to the Yukawa terms Vu, Vd, one related

to the higher order terms vφ1
, vφ2

and one related to the instanton terms E1, E2, E3.

The E4 instanton is much higher than the other instanton contributions because it

appears in the Majorana part (lower right 3 × 3 submatrix) of the seesaw neutrino mass

matrix (4.21).
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Mixing Matrices. Using the above values for the couplings and vev’s, we can proceed

and evaluate the Cabbibo - Kobayashi - Maskawa Matrix (CKM). For the above vacuum,

the matrix is:

CKM(1TeV) =







0.97323 0.22979 0.00300

0.22971 0.97235 0.04200

0.00673 0.04157 0.99911






(4.22)

that is in agreement with data (4.14). Similarly, we evaluate the neutrino mixing matrix:

UNeutrino Mixing =







0.484 + 0.118i 0.166 − 0.687i −0.486 − 0.117i

0.294 + 0.643i 0.001 0.295 + 0.642i

−0.5i 0.707 0.5i






(4.23)

For the rest of the scales, the mixing matrices are:

CKM
(

1012 GeV
)

=







0.992 0.111 0.038

0.114 0.835 0.538

0.028 0.538 0.842






(4.24)

UNeutrino Mixing

(

1012 GeV
)

=







0.995 0.04 − 0.04i 0.05 + 0.05i

−0.076i 0.74 + 0.24i −0.61 + 0.06i

−0.054 0.56 + 0.25i 0.78






(4.25)

at Ms = 1012 GeV, and

CKM(ΛGUT) =







0.973 0.228 0.003

0.228 0.972 0.042

0.006 0.041 0.999






(4.26)

UNeutrino Mixing(ΛGUT) =







−0.43 − 0.11i 0.76 − 0.06i 0.05 − 0.46i

−0.07 − 0.34i −0.18 − 0.59i 0.70

0.82 0.13 − 0.11i 0.02 − 0.54i






(4.27)

at Ms = ΛGUT.

4.3 The KST vacua

In this section we consider a different vacuum which was studied in [29]. This is a (almost)

free-field vacuum with tadpole cancellation. The gauge group is U(3)×Sp(2)×U(1)×U(1)′

times an additional SU(2) coming from the hidden sector of the vacuum. The massless

spectrum contains:

Q1, Q2, Q3 : (1,+1, 0, 0)

U c
1 : (−1, 0,−1, 0) U c

2U c
3 : (−1, 0, 0,−1)

Dc
1 : (−1, 0,+1, 0) Dc

2D
c
3 : (−1, 0, 0,+1)

Lc
1 : (0,+1, 0,−1) Lc

2L
c
3 : (0,+1,−1, 0)

Ec
1, E

c
2, E

c
3 : (0, 0,+1,+1)

N c
1 : (0, 0,−1,+1) N c

2 , N c
3 : (0, 0, 0, 0) (4.28)
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Ms Vu Vd E1

1TeV 644000 2230 2.191

1012 GeV 452960 3160 3.429

ΛGUT 378800 2440 3.245

Table 3. We provide the values of the Yukawa terms Vu, Vd and the instanton term E1 at the

scales of 1TeV, 1012 GeV and at GUT scale.

Notice that the two right-handed neutrinos N c
2 , N c

3 come from the hidden sector and

in particular, they are described by an antisymmetric and it’s conjugate representation of

the hidden SU(2) sector. The two MSSM Higgses are described by

Hu : (0,−1,+1, 0)

Hd : (0,+1,−1, 0) . (4.29)

In this vacuum, an instanton E1 and its conjugate E∗
1 are needed in order to generate the

relevant mass terms for the fermions. The form of this instantons are:

E1 : (0, 0,−1,+1)

E∗
1 : (0, 0,+1,−1) (4.30)

The quark mass matrices for this vacuum are given by:

MU = Vu







g1 g2 g3E
∗
1

g4 g5 g6E
∗
1

g7 g8 g9E
∗
1






(4.31)

MD = Vd







q1 q2 q3E1

q4 q5 q6E1

q7 q8 q9E1






(4.32)

while the lepton and neutrino mass matrices are given by:

ML = Vd







l1 l2 l3
l4 l5 l6
l7E1 l8E1 l9E1






(4.33)

MN =



















0 0 0 g11Vu g12VuE∗
1 g13VuE∗

1

0 0 0 g21Vu g22VuE∗
1 g23VuE∗

1

0 0 V 2
u /Ms g31VuE1 g32Vu g33Vu

g11Vu g21Vu g31VuE1 q11MsE
2
1 q12MsE1 q13MsE1

g12VuE∗
1 g22VuE∗

1 g32Vu q21MsE1 q22Ms q23Ms

g13VuE∗
1 g23VuE∗

1 g33Vu q31MsE1 q32Ms q33Ms



















(4.34)

Notice that in this scenario we have only Yukawas and one instanton term that contribute

to the mass matrices.

In order to evaluate the instanton, we fix at random the norm of the couplings |gi|,
|qi|, |li|, |gij|, |qij| to be of the same order and we solve the systems equating the three
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eigenvalues of each matrix with the masses of the relevant particles. It is worth noting

that we are able to reproduce all the fermion masses for a single value of the instanton E1

except for the neutrino masses. The results are given in the table 3:

The corresponding CKM matrices:

CKM(1TeV) =







0.727 0.444 0.522

0.554 0.755 0.350

0.403 0.481 0.777






(4.35)

CKM(1012 GeV) =







0.825 0.533 0.184

0.496 0.841 0.214

0.269 0.085 0.959






(4.36)

CKM(ΛGUT) =







0.662 0.543 0.515

0.554 0.675 0.486

0.503 0.498 0.705






(4.37)

Due to the small number of parameters (two vev’s and only one instanton) we did not

succeed in satisfying the CKM constraints with couplings in the range 0.1-0.6. In this case,

we didn’t include the neutrino mixing matrices since we have not found any solution that

gives approximately correct values for their masses.

4.4 A vacuum with five stacks

In vacua with five stacks of branes we have more possible charge assignments for each

MSSM particle. In particular, it is possible to find configurations in which all quark

singlets are different.

This possibility allows for vacua where MU , MD and ML are of the form (3.5).

As an example, we consider a vacuum that could be considered as a 5-stack extension

of the original Madrid vacuum with hypercharge Y = 1
6Qa + 1

2Qc + 1
2Qd + 1

2Qe. Our main

interest is to focus in a case where are quark and lepton singlets are different. A vacuum

that is free of anomalies and satisfies our requirements is:

Q1 : (1,+1, 0, 0, 0), Q2 : (1,−1, 0, 0, 0), Q3 : (1,−1, 0, 0, 0)

U c
1 : (−1, 0,−1, 0, 0), U c

2 : (−1, 0, 0,−1, 0), U c
3 : (−1, 0, 0, 0,−1)

Dc
1 : (−1, 0,+1, 0, 0), Dc

2 : (−1, 0, 0,+1, 0), Dc
3 : (−1, 0, 0, 0,+1)

Lc
1 : (0,−1,−1, 0, 0), Lc

2 : (0,−1, 0,−1, 0), Lc
3 : (0,−1, 0, 0,−1)

Ec
1 : (0, 0, 0, 1, 1), Ec

2 : (0, 0, 0, 1, 1), Ec
3 : (0, 0, 2, 0, 0)

N c
1 : (0, 2, 0, 0, 0), N c

2 : (0, 2, 0, 0, 0), N c
3 : (0, 2, 0, 0, 0) (4.38)

The two MSSM Higgses are described by

Hu : (0,−1,+1, 0, 0)

Hd : (0,−1,−1, 0, 0) (4.39)
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and we consider two additional scalars with zero hypercharge φ1, φ2, coming from the non

chiral part of the spectrum:

φ1 : (0, 0,−1,+1, 0)

φ2 : (0, 0,+1,−1, 0). (4.40)

The corresponding mass matrices for the quarks and leptons have the form:

MU = Vu







g1 g2vφ1
g3E1

g4E2 g5E3 g6E4

g7E2 g8E3 g9E4






(4.41)

MD = Vd







q1 q2vφ2
q3E5

q4E2 q5E6 q6E7

q7E2 q8E6 q9E7






(4.42)

ML = Vd







l1 l2vφ2
l3E8

l4E5 l5E9 l6E10

l7E5 l8E9 l9E10






(4.43)

and the neutrino mass matrix have the form:

MN =



















0 0 0 g11VuE2 g12VuE2 g13VuE2

0 0 0 g21VuE2 g22VuE2 g23VuE2

0 0 0 g31VuE3 g32VuE3 g33VuE3

g11VuE2 g21VuE2 g31VuE3 q11MsE11 q12MsE11 q13MsE11

g12VuE2 g22VuE2 g32VuE3 q21MsE11 q22MsE11 q23MsE11

g13VuE2 g23VuE2 g33VuE3 q31MsE11 q32MsE11 q33MsE11



















(4.44)

where again gi, qi and li are dimensionless couplings assumed to be of the same order.

Following the same procedure that was described above we evaluate the higher order

and instanton terms at different scales by equating the eigenvalues of the mass matrices to

the values of the running masses computed at that scale. Finally, we find solutions where

the heavy quark masses are coming from the Yukawa terms, the middle quark masses

are coming from the instantonic terms and the light quark masses are given by higher

order terms:

E1 ∼ E2 ∼ E3 ∼ E4 ∼ mc/Vu

E5 ∼ E6 ∼ E7 ∼ E8 ∼ E9 ∼ E10 ∼ ms/Vb

vφ1
∼ mu/Vu

vφ2
∼ md/Vb (4.45)

where mu, md, mc, ms, mt, mb the masses of the corresponding quarks. Notice that

these solutions are valid at all scales.
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On the other hand, the remaining instanton E11 that appear in the neutrino mass

matrix is fixed to:

1TeV scale : E11 ∼ 0.654

1012 GeV scale : E11 ∼ 0.754

ΛGUT scale : E11 ∼ 2.5 × 10−7 (4.46)

The corresponding mixing matrices are:

CKM(1TeV) =







0.972 0.241 0.007

0.241 0.975 0.014

0.013 0.011 0.999






(4.47)

UNeutrino Mixing(1TeV) =







−0.44 − 0.23i −0.54 + 0.37i −0.20 − 0.52i

0.69 − 0.19i −0.32 + 0.11i −0.54 + 0.17i

0.20 − 0.45i 0.66 −0.16 − 0.56i






(4.48)

at 1TeV,

CKM
(

1012 GeV
)

=







0.975 0.219 0.021

0.221 0.975 0.003

0.018 0.007 0.999






(4.49)

UNeutrino Mixing

(

1012 GeV
)

=







0.56 − 0.46i 0.05 − 0.02i 0.67 + 0.06i

−0.48 + 0.36i 0.43 − 0.25i 0.62 + 0.09i

0.29 − 0.02i 0.85 −0.32 − 0.25i






(4.50)

at 1012 GeV and

CKM(ΛGUT) =







0.973 0.234 0.015

0.236 0.971 0.003

0.017 0.001 0.999






(4.51)

UNeutrino Mixing(ΛGUT) =







0.81 0.12 − 0.44i 0.21 + 0.25i

−0.35 − 0.32i 0.56 − 0.12i 0.32 + 0.55i

0.17 + 0.13i −0.06 + 0.66i 0.69






(4.52)

at ΛGUT. Notice that in this cases, the CKM matrices are very close to the data.

5 Branes at singularities and Z3 symmetry

Singularities of compactification manifolds may carry discrete symmetries that can be

considered are gauged. The reason is that such symmetries are remnants of gauge symmetry

broken by gauge fluxes trapped in the collapsing cycles. Such symmetries have important

consequences for Yukawa couplings.

We will indicate this in a Z3 example14 where the Z3 symmetry acts on the doublet-

triplets but not on the antiquarks that correspond to strings ending on other branes.15

14Several quasi-realistic D-brane configurations at Z3 singularities were first analyzed in [25].
15Related discrete symmetries like S3 have been used in [4] in order to determine masses and mixings in

the SM. The difference here is that the action of the symmetry is not left-right symmetric. Similarly, a Z3

grading of mass matrices in F-theory compactifications was discussed very recently in [10].
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In the presence of a Z3, symmetry that mass matrix of Up and Down quarks is of

the form (3.4). Such a mass matrix has two zero eigenvalues. To give masses to the

massless quarks the Z3 must be broken. This can happen by moving slightly the moduli

that control the collapsed cycle. In the case of the standard Z3 orbifold singularity, these

are the 27 twisted moduli. To classify deformations away from Z3 invariance we introduce

the generating Z3 transformation g, with g3 = 1 as an action on three objects

g







C1

C2

C3






=







0 1 0

0 0 1

1 0 0













C1

C2

C3






=







C2

C3

C1






(5.1)

The (unormalized) eigenvectors of this action are







1

1

1







λ=1

,







1

ρ

ρ2







λ=ρ

,







1

ρ2

ρ







λ=ρ2

(5.2)

where ρ = e
2πi
3 and the subscripts indicate the eigenvalues. Out of the two non-invariant

eigenvectors we can build a vector that is complex conjugation invariant, in the sense that

it is invariant under the transformation generated by

e =







1 0 0

0 0 1

0 1 0






(5.3)

We therefore choose a new orthonormal basis for the two Z3 breaking eigenvectors in

terms of

v0 =
1√
3







1

1

1






, v+ =

1√
6







2

−1

−1






, v− =

1√
2







0

1

−1






(5.4)

v+ has eigenvalue +1 under the action of e while v− has eigenvalue −1. We may now

parameterize a general mass matrix as

∑

ij

Aij vi ⊗ vj , i, j = 0,± (5.5)

From now-on we will assume that the mass matrices are written in the Z3 basis

introduced above.

A mass matrix invariant under the Z3 symmetry acting on the doublet-triplets has

A+i = A−i = 0.

This mass matrix is of type (3.4) and has two zero mass eigenvalues. A matrix that

breaks the Z3 symmetry but is invariant under e is given by non zero A+i matrix elements.

Finally the matrix breaking Z3 and e has non-zero A−i matrix elements. By tuning moduli

appropriately we can arrange the mass matrix to have a hierarchical breaking of the Z3

and e symmetries

Mij = ǫi−1Aij (5.6)
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where ǫ ≪ 1 and all Aij ∼ O(1). The small parameter ǫ controls the breaking of the Z3

and e symmetries.16 In the sequel we take the parameters Aij to be real for simplicity.

Therefore we will give up on explaining the size of the the CP violation parameters of the

SM. It was claimed recently that under a natural measure in the space of KM matrices the

SM CP violation is generic, [51]. If this is correct, then obtaining the CP violation of the

SM does not need any further fine-tuning.

Setting Bij =
(

AAT
)

ij
= Bji then

MM † = Bij ǫ(i+j−2) (5.8)

The eigenvalues for ǫ ≪ 1 are

m2
0 = B00 + O

(

ǫ2
)

, m2
1 =

(

B00B++ − B2
0+

)2

B00
ǫ2 + O

(

ǫ4
)

m2
2 =

(det B)
(

B00B++ − B2
0+

)2 ǫ4 + O
(

ǫ6
)

(5.9)

We therefore generate a natural hierarchy of the masses.

In particular to generate the proper hierarchy of masses for the up-type quarks ǫu = λ4

while for the down-type quarks ǫd = λ2 with λ ≃ 0.22, [8].

5.1 The CKM mixing matrix

To calculate the mixing matrix we need not only the eigenvalues but also the eigenvectors

we present them below First, the eigenvalues are

m2
0 = B00 + ǫ2 B2

0+

B00
+ ǫ4 B2

0+

(

B00B++ − B2
0+

)

+ B2
00B

2
0−

B3
00

+ O
(

ǫ6
)

m2
1 =

(

B00B++−B2
0+

)

B00
ǫ2+

B2
0+

(

B00B++−B2
0+

)2−B2
00 (B00B+−−B0+B0−)

2

B3
00

(

B00B++−B2
0+

) ǫ4+O
(

ǫ6
)

m2
2

det (B)
=

ǫ4

(

B00B++ − B2
0+

) +
(B0+B0− − B00B+−)2

(

B00B++ − B2
0+

)3 ǫ6 + O
(

ǫ8
)

(5.10)

The normalized eigenvector ξ0 for the m0 eigenvalue is

ξ0 =

(

1− ǫ2

2

B2
0+

B2
00

, ǫ
B0+

B00
, ǫ2 B0−

B00

)

+ · · · (5.11)

16There is no a priori reason that the parameters breaking Z3 and e are simply related. More generally

we may write M0i ∼ O(1), M+i ∼ O(ǫ3), M
−i ∼ O(ǫe) where ǫ3 ≪ 1 is controlling Z3 symmetry breaking

and ǫe ≪ 1 the e-symmetry breaking. In this case the matrix B has the form

B ∼

0

B

@

O(1) O(ǫ3) O(ǫe)

O(ǫ3) O
`

ǫ23
´

O(ǫ3ǫe)

O(ǫe) O(ǫ3ǫe) O
`

ǫ2e
´

1

C

A
(5.7)

.

– 24 –



J
H
E
P
0
8
(
2
0
0
9
)
0
2
6

while for the m1 eigenvalue it is

ξ1 =

(

−ǫ
B0+

B00
, 1 − ǫ2

2

B2
0+

(

B00B++ − B2
0+

)2
+ B2

00 (B00B+− − B0+B0−)2

B2
00

(

B00B++ − B2
0+

)2 , (5.12)

ǫ
B00B+− − B0+B0−

B00B++ − B2
0+

)

+ · · · (5.13)

Finally for the m2 eigenvalue we obtain

ξ2 =

(

−ǫ2 B0−B++−B0+B+−

B00B++ − B2
0+

,−ǫ
B00B+−−B0+B0−

B00B++−B2
0+

, 1− ǫ2

2

(B00B+−−B0+B0−)2

(B00B++−B2
0+)2

)

+ · · ·

(5.14)

These eigenvectors are orthonormal to order O
(

ǫ2
)

.

The associated unitary matrix that diagonalizes the mass matrix can be parameterized

in terms of three parameters (a, b, c) and ǫ to order O
(

ǫ2
)

U =







1 − a2

2 ǫ2 aǫ bǫ2

−aǫ 1 − a2+c2

2 ǫ2 cǫ

(ac − b)ǫ2 −cǫ 1 − c2

2 ǫ2






(5.15)

both for the Up and the Down quarks.

We may now evaluate the CKM matrix to be:

VCKM = U †
UUD =







1 + adauǫdǫu adǫd − auǫu −aucdǫdǫu

auǫu − adǫd 1 + (adau + cdcu) ǫdǫu cdǫd − cuǫu

−adcuǫdǫu cuǫu − cdǫd 1 + cdcuǫdǫu







=







1 − 1
2λ4a2

d λ2ad − λ4au λ4bd

λ4au − λ2ad 1 − 1
2λ4

(

a2
d + c2

d

)

λ2cd − λ4cu

λ4 (adcd − bd) λ4cu − λ2cd 1 − 1
2λ4c2

d






(5.16)

where ǫu = λ4, ǫd = λ2, λ ∼ 0.22. If now we assume au ≪ 1, cd ≪ 1 and in addition:

ad ∼ 5, bd ∼ 1, cu ∼ 10, the CKM becomes:

VCKM =







1 − 1
2λ4a2

d λ2ad λ4bd

−λ2ad 1 − 1
2λ4a2

d −λ4cu

λ4 (adcd − bd) λ4cu 1






=







0.970 0.242 0.0023

−0.242 0.970 −0.023

−0.0023 0.023 1







(5.17)

This is in absolute value close to what is measured in experiments.

6 Correlations with experimentally unfavorable couplings (section added

in proof).

There are several renormalizable superpotential couplings that are allowed by the MSSM

gauge symmetries but which are severely constrained by data. They include couplings that
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violate lepton and baryon number as well as couplings that are otherwise acceptable but

may create problems with the hierarchy of masses like the µ-term. Such couplings are

listed below

νc , HuHd , νcνcνc , HdHuνc , (6.1)

dcdcuc , QucL , QdcL , LLlc , HdHdl
c (6.2)

where we have omitted indexes related to the different families.

The first term in (6.1) generates a tadpole for the νc indicating that the right-handed

sneutrino is non-trivial in the vacuum. This is not necessary problematic, although it does

lead to a reanalysis of the Higgs potential and the allowed minima (see for example [29]).

The second term is the well-known µ-term. Its only problem is that for models with

a large characteristic scale, its natural size is the same scale and therefore the EW Higgs

doublets are heavy, unless the theory is fine-tuned. Its unconstrained presence is a problem

only for vacua with a string scale of the order of the GUT scale or an intermediate scale.

The third term in (6.1) is not necessarily problematic, but in the case where the right-

handed sneutrino has a vev it affects the Higgs potential minimization and needs to be taken

into account. The fourth term vanishes identically if we have only a pair of Higgs doublets.

The reason is the antisymmetry of the relevant SU(2) invariants and the symmetry of the

superpotential couplings: ǫabH
a
dHb

dl
c.

In (6.2) all terms are potentially highly problematic. The first term violates baryon

number, the next two violate both baryon and lepton number while the last two violate

lepton number. In the presence of a single Hd, the last term vanishes by antisymmetry.

Typically, in phenomenological models a discrete R symmetry is invoked to exclude them

from the superpotential.

In many orientifold constructions, such terms are excluded due to one or more of the

several U(1) (typically anomalous) gauge symmetries present. There are two possibilities

in this direction:

(a) The symmetry that forbids them is “non-anomalous”. This means that the associated

gauge boson does not mix with string theory axions. This condition is more general

than the vanishing of four-dimensional mixed gauge anomalies, [44, 45]. Sometimes

this is the case with the gauge B-L symmetry. In such cases this symmetry must be

broken spontaneously by the Higgs effect for the model to not be in gross contradiction

with data. Such a symmetry breaking may generate the unwanted terms in (6.1), (6.2)

and may render the vacuum experimentally untenable.

(b) The symmetry that forbids them is “anomalous”. This means that the associated

gauge bosonmixes with string theory axions. This guarantees that the associated

global symmetry, typically unbroken in perturbation theory is violated by instanton

effects. These may be due to standard gauge theory instantons or stringy instantons.

Instanton effects may leave a discrete part of the symmetry unbroken, and this will

may play the role of the R-symmetry.

We have nothing more to say about the case (a), but we do for case (b). The reason is

that we have assumed already in the models we analyze, that some instanton effects do
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appear in order to provide contributions to specific Yukawa couplings. If an unwanted

coupling in the superpotential has the same violation of U(1) charges as a term that has a

non-zero instanton contribution, then there is a non-trivial instanton contribution for this

term. Moreover the strengths of such contributions are related as both contributions differ

only from the disc correlator that contributes (see [52]).

Therefore if one of the terms in (6.1), (6.2) has the same charge violation as some

Yukawa coupling, then this term is generated with a similar strength. If it does not, then

we cannot say for sure if it is generated. It may or it may not, and this can be ascertained

if we know the global structure of the vacuum.

We have analyzed the charge structure of the terms in (6.1), (6.2) in the eight models in

table 1. We have found that of all the terms in (6.1), (6.2), only the µ-term shares the same

charge structure as specific Yukawa couplings, and this is true for all all 8 models. The

relevant Yukawa couplings are Q2,3u
c
1Hu and Q2,3d

c
1Hd and they share the same instanton

E1 with the µ term.

As we have found in the hierarchical solutions (4.10), (4.45), that

E1 ∼ mc/mt (6.3)

we conclude that in such vacua the µ term is present but its size is suppressed by two or

three order of magnitudes compared to the characteristic scale of the vacuum. Therefore for

vacua with a string scale Ms ∼ 1−100 TeV the µ term can have a natural size. For a higher

string scale an independent symmetry is needed in order to suppress the size of the µ term.

On the other hand, none of the bad terms in (6.2) is necessarily generated.

7 Conclusions

In this work we have investigated the possibility of generating the hierarchy of the SM

masses using several characteristics features on orientifold vacua. In such vacua many of

the techniques and ideas used so far in SM building are not always applicable. This is due

to the fact that the charges carried by the SM fields are constrained to satisfy the standard

criteria of opens strings. For example, the doublet triplets are not allowed to carry other

gauge charges. The features we use to generate the mass hierarchies include

• The existence of several (anomalous) U(1) symmetries well beyond those present

in the SM. Such symmetries are generically present, and in general provide serious

constraints on low-energy couplings.

• The existence of scalars beyond those of the SM that can generate higher-

dimension operators that upon symmetry breaking generate masses suppressed by

the string scale.

• The existence of instanton effects well beyond standard gauge instantons, that can

provide small values to couplings otherwise forbidden by anomalous U(1)s.

• The possibility to use discrete symmetries that exist at special points in moduli space

and which can be broken infinitesimally.
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particles µ = mZ µ = 1TeV µ = 1012 GeV µ = 2 × 1016 GeV

u 1.27 ± 0.42 1.15 ± 0.38 0.62 ± 0.22 0.48 ± 0.17

d 2.90 ± 1.19 2.20 ± 0.90 0.69 ± 0.17 0.51 ± 0.22

c 619 ± 84 557 ± 77 304 ± 45 237 ± 37

s 55 ± 15 42 ± 12 13 ± 4 10 ± 3

t 171700 ± 13000 161000 ± 3700 113200 ± 77000 94700 ± 80000

b 2890 ± 110 2230 ± 80 790 ± 50 610 ± 40

e 0.486 0.418 0.235 0.206

µ 102.751 88.331 49.75 43.50

τ 1746.24 1502.25 875.31 773.44

νe 10−9 10−9 10−9 10−9

νµ 9 × 10−9 9.38 × 10−9 1.0 × 10−8 1.0 × 10−8

ντ 5.08 × 10−8 5.28 × 10−8 5.74 × 10−8 5.74 × 10−8

Table 4. The masses of the SM particles in a supersymmetric framework, for tanβ ∼ 50 and for

the scales of 1TeV, 1012 GeV and at GUT scale [49].

With a view of the possibilities we have analyzed bottom-up SM brane configurations

with charges that allow the implementation of such mechanisms.

We have classified such configurations and analyzed the promising ones. Our analysis

was exploratory and did not analyze concrete orientifold vacua. We have however shown

constructively that the SM mass matrices and mixings, can be accommodated in several

configurations with couplings of O(1). The outcome of this exercise is a list of brane

configurations that seem promising for generating the SM mass hierarchy.

A direct next step is to search for such configurations in the master list of top-down

models produced in [27]. This is under way.
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A Masses at various scales

In this section, we provide the masses of the SM particles in a supersymmetric framework,

for various scales and for tan β ∼ 50 [49].
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B D-brane embeddings

B.1 Three stacks: the U(3) × U(2) × U(1) vacua

There are two possible ways to embed the SM in this D-brane system of three stacks, [15]:

Y = −1

3
Qa −

1

2
Qb

Q : ( 1, 1, 0)

uc : ( 2, 0, 0)

dc : (−1, 0,±1)

L : ( 0,−1,±1)

lc : ( 0, 2, 0)

H : ( 0, 1,±1)

H ′ : ( 0,−1,±1)

Y =
1

6
Qa +

1

2
Qc

Q : ( 1,±1, 0)

uc : (−1, 0,−1)

dc : ( 2, 0, 0) or (−1, 0, 1)

L : ( 0,±1,−1)

lc : ( 0, 0, 2)

H : ( 0,±1, 1)

H ′ : ( 0,±1,−1)

The three numbers in each parenthesis (q3, q2, q1) denote the corresponding U(1) charges

of each particle. The ± sign is related to the freedom to choose the charge under the U(1)2
since the corresponding gauge boson does not contribute to the hypercharge. The 2 denotes

antisymmetric/ symmetric representations for the non-abelian/abelian factors respectively.

B.2 Four stacks: U(3) × U(2) × U(1) × U(1)′ vacua

In this section, we study four-stack realizations of the SM. We continue with the statistics

of fours-stack vacua [27].

Hypercharge Y = −
1

3
Qa −

1

2
Qb + Qd. The corresponding charge assignments are:

Q : ( 1,−1, 0, 0)

U c : ( 2, 0, 0, 0) or (−1, 0, 0, 1)

Dc : (−1, 0,±1, 0)

L : ( 0, 1,±1, 0) or ( 0,−1, 0,−1)

Ec : ( 0,−2, 0, 0) or ( 0, 0,±1,−1)

N c : ( 0, 0,±2, 0)

Hu : ( 0,−1,±1, 0) or ( 0, 1, 0,−1)

Hd : ( 0,−1, 0, 1) or ( 0, 1,±1, 0)
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Hypercharge Y = 2

3
Qa + 1

2
Qb + Qc. The corresponding charge assignments are:

Q : ( 1,−1, 0, 0)

U c : (−1, 0, 0,±1)

Dc : (−1, 0, 1, 0)

L : ( 0,−1, 0,±1) or ( 0, 1,−1, 0)

Ec : ( 0, 2, 0, 0) or ( 0, 0, 1,±1)

N c : ( 0, 0,±2, 0)

Hu : ( 0,−1, 1, 0) or ( 0, 1, 0,±1)

Hd : ( 0,−1, 0,±1) or ( 0, 1,−1, 0)

Hypercharge Y = 1

6
Qa + 1

2
Qc −

1

2
Qd. The corresponding charge assignments are:

Q : ( 1,±1, 0, 0)

U c : (−1, 0,−1, 0) or (−1, 0, 0, 1)

Dc : ( 2, 0, 0, 0) or (−1, 0, 1, 0) or (−1, 0, 0,−1)

L : ( 0,±1,−1, 0) or ( 0,±1, 0, 1)

Ec : ( 0, 0, 2, 0) or ( 0, 0, 1,−1) or ( 0, 0, 0,−2)

N c : ( 0,±2, 0, 0) or ( 0, 0, 1, 1) or ( 0, 0,−1,−1)

Hu : ( 0,±1, 0,−1) or ( 0,±1, 1, 0)

Hd : ( 0,±1, 0, 1) or ( 0,±1,−1, 0)

Hypercharge Y = 1

6
Qa + 1

2
Qc −

3

2
Qd. The corresponding charge assignments are:

Q : ( 1,±1, 0, 0)

U c : (−1, 0,−1, 0)

Dc : (−1, 0, 1, 0) or ( 2, 0, 0, 0)

L : ( 0,±1, 1, 0)

Ec : ( 0, 0,−1, 1) or ( 0, 0, 2, 0)

N c : ( 0,±2, 0, 0)

Hu : ( 0,±1, 1, 0)

Hd : ( 0,±1,−1, 0)
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Hypercharge Y = −
1

3
Qa −

1

2
Qb. The corresponding charge assignments are:

Q : ( 1,−1, 0, 0)

U c : ( 2, 0, 0, 0)

Dc : (−1, 0,±1, 0) or (−1, 0, 0,±1)

L : ( 0,−1,±1, 0) or ( 0,−1, 0,±1)

Ec : ( 0,−2, 0, 0)

N c : ( 0, 0, 0,±2) ( 0, 0,±2, 0) ( 0, 0,±1,±1)

Hu : ( 0, 1,±1, 0)

Hd : ( 0,−1,±1, 0)

Hypercharge Y = −
5

6
Qa − Qb −

1

2
Qc + 3

2
Qd. The above hypercharge embedding is

allowed only in cases where the right-handed neutrino is coming from the hidden sector.

The corresponding charge assignments are:

Q : ( 1,−1, 0, 0)

U c : (−1, 0, 0, 1)

Dc : (−1, 0, 1, 0)

L : ( 0,−1, 0, 1) or ( 0, 1,−1, 0)

Ec : ( 0, 0,−2, 0) or ( 0, 0, 1,−1)

Hu : ( 0,−1, 1, 0) or ( 0, 1, 0,−1)

Hd : ( 0,−1, 0, 1) or ( 0, 1,−1, 0)

Hypercharge Y = 7

6
Qa + Qb + 3

2
Qc + 1

2
Qd. The above hypercharge embedding is

allowed only in cases where the right-handed neutrino is coming from the hidden sector.

The corresponding charge assignments are:

Q : ( 1,−1, 0, 0)

U c : (−1, 0, 0, 1)

Dc : (−1, 0, 1, 0)

L : ( 0, 1,−1, 0) or ( 0,−1, 0, 1)

Ec : ( 0, 0, 0, 2) or ( 0, 0, 1,−1)

Hu : ( 0,−1, 1, 0) or ( 0, 1, 0,−1)

Hd : ( 0, 1,−1, 0) or ( 0,−1, 0, 1)
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C Summary of solutions

In this section, we present the values of the couplings for two indicative vacua: One with

four and one with five stacks of branes:

Four stack vacuum 1: a = c = d = 1, b = f = h = 0, e = g = 2. As it was

presented in the main text, the values of the Yukawa, higher and instantonic terms for

scale Λ = 1TeV are:

vφ1
= 0.62

vφ2
= 0.34

E1 = 1.66 × 10−6

E2 = 0.0008

E3 = 0.0038

E4 = 0.357 (C.1)

The values of the corresponding couplings are:







g1 g2 g3

g4 g5 g6

g7 g8 g9






=







0.25 0.25 −0.25

0.25 0.25 0.247

0.25 0.25 0.25













q1 q2 q3

q4 q5 q6

q7 q8 q9






=







0.25 0.25 −0.25

0.41 −0.43 − 0.03i −0.09 + 0.49i

0.41 −0.39 − 0.02i 0.03 + 0.44i













l1 l2 l3
l4 l5 l6
l7 l8 l9






=







0.25 0.25 −0.25

−0.25 0.25 0.25

0.25 0.25 −0.275






(C.2)

Similar values for the couplings have been found at higher scales.

Five stack branes. The values for the Yukawa, higher and instantonic terms for all

scales are:

Vu = 4mt , Vd = 4mb ,

E1 = E2 = E3/2 = E4 = mc/Vu

vφ1
= 2mu/Vu

E5/2 = E6/4 = E7/2 = E8/2 = E9 = E10 = ms/Vb

vφ2
= md/Vb (C.3)
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and the corresponding couplings:






g1 g2 g3

g4 g5 g6

g7 g8 g9






=







0.249 0.115 −0.280

−0.116 −0.228 −0.259

−0.141 −0.119 −0.135













q1 q2 q3

q4 q5 q6

q7 q8 q9






=







−0.249 −0.146 0.241

0.154 0.588 0.482

0.675 0.114 0.128













l1 l2 l3
l4 l5 l6
l7 l8 l9






=







−0.07 + 0.33i 0.23 − 0.39i 0.32 + 0.05i

0.22 + 0.02i −0.49 − 0.33i 0.50

−0.26 + 0.05i −0.39 − 0.26i 0.16






(C.4)

Notice that these values of the couplings give the correct masses at all scales.

D Diagonalizing mass matrixes and the Cabbibo-Kobayashi-Maskawa

matrix

We denote the mass matrices for the quarks as MU and MD. These are 3 × 3 matrices

in the flavor space and in general they are not hermitian. We can construct a related

hermitian matrix

MUM †
U (D.1)

Being hermitian this matrix is diagonalizable with real eigenvalues and thus it can be

decomposed in the form

MUM †
U = UUD2

UU †
U (D.2)

where D2
U is a diagonal matrix with positive eigenvalues and UU is a unitary matrix com-

posed of the eigenvectors of MUM †
U . We can follow the same procedure for the down-type

Yukawa matrix

MDM †
D = UDD2

DU †
D (D.3)

where UD is composed of the eigenvectors of MDM †
D. The Cabibbo-Kobayashi-Maskawa

(CKM) mixing matrix is

VCKM = U †
UUD (D.4)

The matrix VCKM can have complex elements, but it is possible to remove phases from

VCKM by performing phase rotations of the various quark fields.

D.1 RGE for the CKM matrix

The running CKM matrix elements are obtained by solving the related RGE. The result

in the MSSM framework has been computed in [47]:

|Vαβ(µ)| =











|Vαβ(mt)| exp
[

3
2(It(MS)+Ib(MS))−

(

Ĩt(MS)+Ĩb(MS)
)]

αβ = ub, cb, tb, ts

|Vαβ(mt)| otherwise
(D.5)
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where, for each quark f , the functions If (MS) is defined as

If (µ) =
1

16π2

∫ ln(µ)

ln(mt)
y2

f (t′)dt′ (D.6)

computed for µ = MS , where MS is the supersymmetry breaking scale. yf is the corre-

sponding Yukawa coupling. The function Ĩf (MS) is defined as

Ĩf (µ) =
1

16π2

∫ ln(µ)

ln(mS)
y2

f (t′)dt′ (D.7)

The one loop equations for the two vev’s vu and vd and for tan(β) get also modified.

Anyway from now on we will assume that these quantities are constant functions of the

renormalization scale µ. Under this hypothesis one can estimate the numerical value of the

CKM matrix at the unification scale µ = MGUT ≃ 1016 GeV [48]:

VCKM(MGUT) =







0.9754 0.2206 −0.0035i

−0.2203i 0.9745 0.0433

−0.0032i −0.0005i 0.9995






(D.8)

E Seesaw comments

The seesaw mechanism cannot solve the problem in low string scale vacua with Ms ∼ TeV .

In this case, the mass-matrix will look like (to be seen as a 6 × 6 matrix):

MN ∼
(

0 Vu

Vu E4

)

(E.1)

with three eigenvalues ∼ E4 and three ∼ V 2
u /E4. Notice that here, the instantons are

giving the Majorana mass E4νRνR and there is no need of Higgs as in all the other cases.

F Mass matrixes of all eight models of table 1.

In this section, we present the mass matrices of the all eight bottom-up models of table 1.

In all these models the MU , MD mass matrices have the same form:

MU ∼ Vu







1 vφ2
vφ2

Eu1 E2 E2

Eu1 E2 E2






, MD ∼ Vd







1 vφ1
vφ1

Ed1 E3 E3

Ed1 E3 E3






(F.1)
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They differ only in the leptonic sector and the related matrices are given bellow:

1 : ML ∼ Vd







E4 vφ1
1

E4 vφ1
1

E4 vφ1
1






, MN

12 ∼ Vu







E1 E1 E1

E1 E1 E1

E1 E1 E1






(F.2)

2 : ML ∼ Vd







E4 1 1

E4 1 1

vφ1
vφ2

1vφ2






, MN

12 ∼ Vu







E1 E1 E1

E1 E1 E1

E2 E2 E2






(F.3)

3 : ML ∼ Vd







E4 vφ1
vφ1

vφ1
1 1

vφ1
1 1






, MN

12 ∼ Vu







E1 E1 E1

E2 E2 E2

E2 E2 E2






(F.4)

4 : ML ∼ Vd







vφ1
1 1

1 vφ2
vφ2

1 vφ2
vφ2






, MN

12 ∼ Vu







E1 E1 E1

E2 E2 E2

E2 E2 E2






(F.5)

5 : ML ∼ Vd







E4 E4 vφ1

E4 E4 vφ1

vφ1
vφ1

1






, MN

12 ∼ Vu







E1 E1 E1

E1 E1 E1

E2 E2 E2






(F.6)

6 : ML ∼ Vd







vφ1
vφ1

1

vφ1
vφ1

1

1 1 vφ2






, MN

12 ∼ Vu







E1 E1 E1

E1 E1 E1

E2 E2 E2






(F.7)

7 : ML ∼ Vd







E4 E4 1

vφ1
vφ1

1vφ2

vφ1
vφ1

1vφ2






, MN

12 ∼ Vu







E1 E1 E1

E2 E2 E2

E2 E2 E2






(F.8)

8 : ML ∼ Vd







vφ1
1 vφ2

vφ1
1 vφ2

vφ1
1 vφ2






, MN

12 ∼ Vu







E2 E2 E2

E2 E2 E2

E2 E2 E2






(F.9)

where with MN
12 we denote only the upper off-diagonal part of the neutrino mass matrix

since the general form can be written as:

(

0 MN
12

(

MN
12

)T
MsE5 I3×3

)

(F.10)

which is the standard form in seesaw mechanism.
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M. Billó, M. Frau, F. Fucito and A. Lerda, Instanton calculus in RR background and the

topological string, JHEP 11 (2006) 012 [hep-th/0606013] [SPIRES];

M. Bianchi and E. Kiritsis, Non-perturbative and flux superpotentials for type I strings on

the Z3 orbifold, Nucl. Phys. B 782 (2007) 26 [hep-th/0702015] [SPIRES];

R. Argurio, M. Bertolini, G. Ferretti, A. Lerda and C. Petersson, Stringy instantons at

orbifold singularities, JHEP 06 (2007) 067 [arXiv:0704.0262] [SPIRES];

M. Bianchi, F. Fucito and J.F. Morales, D-brane Instantons on the T 6/Z3 orientifold,

JHEP 07 (2007) 038 [arXiv:0704.0784] [SPIRES];
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[43] D. Cremades, L.E. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane

models, JHEP 07 (2003) 038 [hep-th/0302105] [SPIRES].

[44] I. Antoniadis, E. Kiritsis and J. Rizos, Anomalous U(1)s in type-I superstring vacua,

Nucl. Phys. B 637 (2002) 92 [hep-th/0204153] [SPIRES].

[45] P. Anastasopoulos, 4D anomalous U(1)’s, their masses and their relation to 6D anomalies,

JHEP 08 (2003) 005 [hep-th/0306042]; Anomalous U(1)s masses in non-supersymmetric

open string vacua, Phys. Lett. B 588 (2004) 119 [hep-th/0402105] [SPIRES].
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